
1. Introduction
The rheology of continental lithosphere controls seismicity, orogeny, basin-formation in continents, and is 
partially responsible for the bimodal recycling of Earth’s surface wherein continental lithosphere may be 
older than several Ga while oceanic lithosphere is generally younger than 200 Ma. Because of the sensitivity 
of lithospheric rheology to temperature and composition, increased crustal thickness may give rise to an in-
termediate weak layer (i.e., weak lower crust) (Bird, 1991; Chen & Molnar, 1983), which may have a signif-
icant impact on the tectonics of orogenic regions such as Tibet (Clark & Royden, 2000; Royden et al., 1997). 
Lithospheric rheology is frequently investigated in mineral physics experiments (Goetze & Evans, 1979) 
and inferred from field observations of radial seismic anisotropy (e.g., Shapiro et al., 2004) and surface wave 
tomography (Shen et al., 2013) which show that crustal rocks (e.g., quartz, diabase) may become extremely 
weak for conditions under which adjacent lithospheric mantle rocks remain much stronger (e.g., olivine). 
Lithospheric rheology is also frequently constrained by observations of flexure in response to surface loads 
such as mountains ranges, plateaus, basins, and glacial isostatic adjustment (Watts, 2001). However, it is 
not necessarily clear what effects an intermediate weak layer may have on lithospheric flexure and what 
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implications this may have for constraints on continental rheology. In the following, we briefly review the 
origins of the cubic rule.

In flexural studies, the effective elastic thickness (Te) of the lithosphere is estimated based on a comparison 
of observed flexure to that predicted for an elastic plate subject to an estimated surface load (i.e., the elastic 
plate model) (e.g., McNutt, 1984; Turcotte & Schubert, 1982; Walcott, 1970). Previous studies have extend-
ed the elastic plate model to include anelastic yielding in the yield stress envelope (YSE) method (Garcia 
et al., 2019; McNutt & Menard, 1982; Mueller & Phillips, 1995) in which the bending moment of a yielding 
plate is estimated by vertically integrating an inferred stress profile based on laboratory-derived rheological 
parameters,

   0 ,xx nM z z dz (1)

in which σxx is the differential bending stress, z is depth, and zn the depth of the neutral plane. Then, to solve 
Te of the yielding plate, the bending moment based on Equation 1 is equated to the bending moment of a 
purely elastic plate
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in which κ is surface curvature, E is Young’s modulus, and υ is Poisson’s ratio.

In general, the integral in Equation 1 is applied across the entire depth of the lithosphere and previous 
studies have asserted that because integrating over weak zones contributes little to the bending moment, 
the total bending moment of a multilayer lithosphere should simply be the sum of the bending moments 
in each mechanically competent layer. Therefore, because the bending moment in each competent layer is 
proportional to the elastic thickness-cubed (Equation 2), previous studies asserted that the effective elastic 
thickness Te of a multilayer lithosphere should be given by (e.g., Burov, 2015; Burov & Diament, 1995),
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in which n is the number of mechanically competent layers, and Tei is the elastic thickness of each compe-
tent layer, i. Equation 3 expresses the cubic rule for Te which we will test in the following study.

According to the cubic rule, the flexure of a multilayer lithosphere is assumed to be entirely determined by 
the competent layer thicknesses (e.g., Burov, 2015; Burov & Diament, 1995). However, it is not necessarily 
clear how the dynamics of a multilayer lithosphere may be dependent on the properties of intermediate 
weak layers. For example, curvature of the upper mechanically competent layer may exceed that of a lower 
competent layer if the latter is decoupled from a surface load by an intermediate weak layer, and the degree 
of decoupling may be sensitive to the weak layer viscosity and geometry. The significance of competent lay-
ers being subject to different curvature is that curvature controls the proportionality relation between elastic 
thickness and the bending moment. In other words, summing the bending moments of multiple competent 
layers in a multilayer lithosphere (Equation 2) simplifies to the cubic rule if and only if curvature is constant 
across layers. We find it pertinent to test whether surface stresses are indeed transmitted to deep mechan-
ically competent layers which may be decoupled from the surface by intermediate weak layers, especially 
because the cubic rule has been broadly applied in flexural studies but relies on an assumption that has not 
yet been verified (e.g., Burov, 2015; Burov & Diament, 1995; McNutt et al., 1988).

In this study, we test whether the cubic rule (Equation 3) is valid for geologically relevant rheological struc-
tures. We hypothesize that the weak lower crust may act as a decoupling layer that imposes significant 
influence on the flexural response of the lithosphere to surface loads and the predicted elastic thickness. 
We assemble 2D viscoelastic loading models subject to surface loads to directly test whether a plate with an 
intermediate weak layer responds similarly to a plate with total elastic thickness based on the cubic rule. 
Both analytic and numerical solutions are available for viscoelastic deformation of a medium with layered 
viscosity and both are implemented herein. The models of this study also represent the first fully dynamic 
assessment of the effects of a weak intermediate layer on flexure.
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2. Methods
The response of a viscoelastic medium to a surface load may be solved 
analytically provided the viscosity is limited to vertically stratified layers 
only, while numerical solutions are required for more complex viscosity 
structures. Both analytic and numerical models are used in this study 
and in the following, we introduce the properties that apply to both. Both 
models solve the time-dependent response of an incompressible Max-
wellian medium to a surface load in 2D Cartesian geometry. The surface 
boundary is a free and deformable density interface, while the vertical 
side and bottom boundaries are subject to the free-slip condition. The en-
tire domain has uniform mantle density, uniform elastic properties, and 
the viscosity is layered (models have two or four distinct viscosity layers).

The governing equations for an incompressible medium are conservation 
of mass and momentum (e.g., Zhong, 1997)

, 0,i iu (4)

   , 2 0,ij j igu (5)

in which ui is displacement, τij is the stress tensor, ρ is density, g is acceler-
ation due to gravity, u2 is the displacement in the vertical dimension, and 
we use subscript notation where subscripts following a comma denote a 
spatial derivative. The rheology of a Maxwellian medium is derived from 
elastic and viscous deformation combined in series (e.g., Zhong, 1997)

   

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in which η is viscosity, μ is the shear modulus, ijE  is the stress rate tensor, p is pressure, and ijE   is the strain 
rate tensor. An important timescale known as the Maxwell time, τM = η/μ, controls the timescale on which 
viscoelastic deformation occurs.

The surface is subject to a time-independent topographical load, σ0 = ρgh(x), in which ρ is mantle density, 
and the load height is given by

  


 0
2cos ,xh x h (7)

in which h0 is the load amplitude, x is the horizontal coordinate, and λ is the load wavelength. The do-
main-width is equal to the half-wavelength of the load (120 km in most cases), and the domain-depth is 
600 km (Figure 1). In the following subsections, we describe the differing aspects of the analytic and nu-
merical models separately. We will also present some results based on the elastic plate model which is well 
documented in other sources and not reproduced here (e.g., Turcotte & Schubert, 1982).

2.1. The Analytic Viscoelastic Loading Model

The 2D analytic viscoelastic loading model was developed by Zhong (1997) and includes the propagator 
matrix method (e.g., Hager & O'Connell, 1981). It is formulated in three important steps: (a) the Laplace 
transform is applied to express the governing equations in the spectral domain; (b) the unknowns are solved 
in the Laplace domain following the propagator matrix method; and (c) the reverse Laplace transform is 
applied to transform variables back into the time domain. All horizontal dependencies of model parameters 
are expressed in terms of Fourier series for a given wavelength, λ. The result of this solution method is that 
the flexural response of the free surface is controlled by eigenmodes of deformation, and the number of 
eigenmodes that contribute to the total solution is given by the number of density and viscosity interfaces 
in the model. One eigenmode is contributed to the total solution for each deformable density interface (i.e., 
the surface in our models), and two eigenmodes are added for each internal viscosity interface. For example, 
the surface flexure will be governed by three distinct eigenmodes in a model that contains one deformable 
boundary and one internal viscosity interface.

Figure 1. Viscosity and the load. The viscosity structure and the surface 
load, h(x), for (a) Case 0a, a two-layer model with Te = 10 km, and (b) 
Case 1, a four-layer model with Te1 = 10 km, Te2 = 30 km, and weak layer 
thickness equal to 20 km. Note that the vertical sides are subject to a 
reflecting boundary condition such that solutions are effectively periodic. 
The top surface is free and deformable, and the bottom surface is free-slip.
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The time-dependent amplitude of surface flexure expressed in terms of eigenmodes 
is given


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in which A0
(i) is the characteristic amplitude of each eigenmode, i, and τ(i) the char-

acteristic timescale of each eigenmode, i. The horizontal dependence (x) is sinusoi-
dal with wavelength equal to that of the load (i.e., cos(2πx/λ)). Results will generally 
be presented in terms of the load-normalized amplitude of flexure, w0(t)/h0.

It is clear from Equation 8 that as t goes to infinity, the normalized flexural response 
approaches −1, which represents complete isostatic compensation of the surface 
load. Meanwhile, at t = 0, the initial flexure is expressed
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which represents the instantaneous elastic response which is generally <0 (i.e., op-
posite sign to the surface load h0) since the sum of the characteristic amplitudes 
(i.e., Σi-1

nA0
(i)/h0) is a constant generally <1. As time evolves, eigenmodes decay on 

timescales defined by the characteristic timescale, τ(i) (Equation 8).

2.2. The Numerical Viscoelastic Loading Model

The numerical viscoelastic loading model was initially developed by Zhong 
et al. (2003) using an incremental displacement formulation such that the matrix 
equations can ultimately be solved by the same solvers as are applied in viscous 
flow models for mantle convection (i.e., the Uzawa algorithm as implemented in 
Citcom). The solutions include 2D time-dependent displacement, stress, strain rate, 
and surface flexure, and the grid is Lagrangian to best accommodate the viscoe-
lastic deformation. The same finite element code, CitcomSVE, has been applied 
with 3D spherical geometry to post-glacial rebound problems (Paulson et al., 2005; 
Zhong et al., 2003), and with 3D Cartesian geometry to model volcanic loading at 
ocean islands and seamounts (Bellas et al., 2020; Bellas & Zhong, 2021; Zhong & 
Watts, 2013).

Our 2D Cartesian numerical models employ a finite element grid with 25 grid 
points in the horizontal direction and 81 grid points in the vertical direction. The 
domain width is varied based on the half-wavelength of the load (120 km for most 
cases), and the domain depth is 600 km in all cases. Vertical grid refinement is ap-

plied near the surface such that the vertical resolution is 2.5 km in the upper 100 km. The time-evolution 
of the numerical model is resolved by time steps Δt = τM/2, where τM = η0/μ∼950 years is the Maxwell time 
defined by the minimum viscosity in the model (1021 Pa s).

3. Results
In the following, we first present results for a simple, two-layer viscosity model to illustrate how eigenmodes 
control the analytic solution of surface flexure. We then present results for a series of four-layer models to 
systematically test the validity of the cubic rule (Equation 3).

3.1. Single-Layer Lithospheres

In Case 0a, the viscosity is 1030 Pa s in the upper 10 km, and 1021 Pa s in the lower 590 km, and the surface 
is subject to a load with 1 km amplitude and 120 km half-wavelength (i.e., λ = 240 km). (Figure 1a, Table 1). 
The Maxwell time (τM = η/μ) associated with the high-viscosity layer is ∼1012 years such that negligible vis-
cous stress relaxation occurs on tectonically reasonable timescales (e.g., <1 Gyr), so we refer to this model 
as having elastic thickness Te = 10 km.

i τ(i) (years) A0
(i)/h0

Case 0a, Te = 10 km

1 2.93942E+03 3.67367E-04

2 4.48776E+04 8.47010E-01

3 1.09837E+12 1.33900E-01

Case 0b, Te = 30 km

1 2.00047E+03 2.17841E-04

2 1.26957E+04 1.92528E-01

3 4.49852E+12 7.88532E-01

Case 0c, Te = 60 km

1 1.90853E+03 3.31997E-05

2 3.76460E+03 2.84508E-02

3 2.01519E+13 9.52794E-01

Case 1, Te1 = 10 km, Te2 = 30 km

1 9.53011E+02 2.16342E-06

2 1.30260E+03 2.54284E-03

3 2.11170E+03 3.29208E-03

4 2.92738E+03 1.76302E-04

5 2.32704E+04 1.73081E-01

6 2.31675E+06 6.68283E-01

7 1.09837E+12 1.33901E-01

Case 1a, Te = 30.3659 km

1 1.99701E+03 2.13693E-04

2 1.24107E+04 1.87049E-01

3 4.61826E+12 7.94015E-01

Note. i is the eigenmode number, τ(i) is the characteristic 
timescale, A0

(i) is the characteristic amplitude, and h0 is the 
amplitude of the load.

Table 1 
Characteristic Times and Amplitudes of Analytic Eigenmodes
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The surface flexure is governed by three eigenmodes which have characteristic timescales 
τ(1) = 2.93942 × 103 years, τ(2) = 4.48776 × 104 years, and τ(3) = 1.09837 × 1012 years, and normalized charac-
teristic amplitudes A0

(1)/h0 = 3.67367 × 10−4, A0
(2)/h0 = 0.847010, and A0

(3)/h0 = 0.133900 (Table 1). The ex-
ceedingly large characteristic time of the third eigenmode, τ(3) = 1.09837 × 1012 years, is consistent with the 
Maxwell time for large lithospheric viscosity (1030 Pa s), while the first two modes are associated with much 
shorter timescales (103–104 years) that are consistent with the Maxwell time for mantle viscosity (1021 Pa s). 
Therefore, the first two eigenmodes manifest the effects of viscous stress relaxation in the mantle, and the 
third eigenmode manifests the effects of viscous stress relaxation in the lithosphere on surface flexure.

At t = 0 in Case 0a, the deflection of the surface is associated with the purely elastic response of the entire 
domain and has very small amplitude w0(t = 0)/h0 = −0.0187 (Figure 2a) (refer to Equation 9 for a simple 
relation between this amplitude and the eigenmodes). At t ∼ 104 years (i.e., t ∼ τ(2)), mantle stresses begin 
to relax, lithospheric stresses increase, and the amplitude of flexure increases due to the evolution of the 
second eigenmode (Figures 2a and 2b). In general, the second eigenmode is of great significance because it 
represents the vertical displacement of the Earth’s surface that results from the viscous relaxation of stress 
in the mantle and the elastic support of stress in the lithosphere, which may be modeled and compared 
with observations to constrain mantle viscosity (e.g., glacial isostatic adjustment). After t ∼ 105 years (i.e., 
t >> τ(2)), the second eigenmode has completely decayed (i.e., viscous stress relaxation in the mantle has 
reached steady state) and the flexure has reached a steady state with amplitude w0(t)/h0 = −0.866 (Fig-
ure 2b). The amplitude of the steady state flexure is given by 1−A0

(3)/h0 = −0.866 for t that is significantly 
larger than τ(2) or ∼105 years but less than τ(3) or ∼1012 years (Equation 8), and represents the lithospheric 
mode (i.e., the elastic response of the lithosphere) which is consistent with the flexure computed by the elas-
tic plate model (e.g., Turcotte & Schubert, 1982). As time approaches τ(3) or t ∼ 1012 years, lithospheric stress 
starts to relax viscously (i.e., the third eigenmode starts to decay), and surface flexure eventually reaches −1 
at which point lithospheric stress is fully relaxed and the system is in a state of complete isostatic compen-
sation (Figure 2b, Equation 8). Of key importance is that the lithospheric mode (i.e., the steady state flexure 
between ∼105 and ∼1012 years) is controlled by the third eigenmode (e.g., 1−A0

(3)/h0 = −0.866).

The time-dependent solutions of the flexure based on numerical viscoelastic models agree with analytical 
solutions extremely well (Figures 2a and 2b), as expected (Zhong et al., 2003; Zhong & Watts, 2013). The 
numerical solution is computed up to the lithospheric mode, only, for computational efficiency and since 
viscous relaxation of the lithosphere is not particularly relevant to observations of flexure. Good agreement 
with the lithospheric mode of the analytic viscoelastic solution is also achieved by the elastic plate model 
(Figures 2a and 2b).

We also present solutions for two-layer models with Te  =  30  km (Case 0b and Figures  2c and  2d) and 
Te = 60 km (Case 0c and Figures 2e and 2f). The dynamics are broadly similar to those of Case 0a with 
Te = 10 km, except that the amplitudes and timescales of the responses differ (Figure 2 and Table 1). As Te 
increases, τ(1) and τ(2) decrease slightly, τ(3) increases slightly, and A0

(3) increases significantly at the expense 
of other two modes (Table 1 and Figure 2). Note also that the numerical viscoelastic solutions always agree 
with the analytical viscoelastic solutions, but the agreement achieved by the elastic plate model degrades for 
larger Te because the thin plate approximation breaks down for increasing Te.

3.2. Multilayer Lithospheres

In this subsection, we test whether the flexural response of a multi-layer lithosphere is consistent with the 
cubic rule (e.g., Burov,  2015). Results are derived primarily from analytic models which predict surface 
flexure based on eigenmodes, and results from numerical models are presented secondarily to investigate 
the evolution of internal stresses.

3.2.1. Effects of an Intermediate Weak Layer

First, we test Case 1, a four-layer model with a total lithospheric thickness of 60 km within which there 
are three layers with thicknesses 10, 20, and 30 km from the top to bottom, which have viscosity equal to 
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1030, 1021, and 1030 Pa s, respectively (Figure 1b). The high-viscosity lithospheric layers are referred to as the 
upper and lower mechanically competent layers. The load amplitude h0 = 1 km and the load wavelength 
λ = 240 km.

The flexural response is controlled by seven distinct eigenmodes, as expected for a system with one deform-
able density interface and three internal viscosity interfaces (Table  1). The first five eigenmodes have 
characteristic times τ(1–5) ≤  12.33  ×  104  years, while the seventh mode has τ(7)  =  1.10  ×  1012  years. The 

Figure 2. Time-dependent surface flexure. In the left-hand column (a, c, and e) we show the normalized surface 
deflection as a function of horizontal location, x, and time, t for t = 0, 9.5, 19.0, 47.6 kyr, and 30.4 Myr based on the 
numerical and analytic viscoelastic models, and the analytic elastic plate model. Note that the vertical axis limits 
are not constant, and the legend in (a) is relevant to all panels. In the right-hand column (b, d, and f), we show the 
normalized amplitude of surface deflection as a function of time. The numerical viscoelastic solution is evolved up to 
only ∼30 Myr or the steady state elastic response of the lithosphere. The solutions based on the viscoelastic models 
agree well in all instances, while the elastic plate model begins to deviate from the viscoelastic solutions for large plate 
thickness compared to the wavelength of the load (c–f) due to breakdown of the thin plate approximation.
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 characteristic timescales τ(1–5) and τ(7) are consistent with the Maxwell 
time for mantle viscosity and lithospheric viscosity, respectively. Howev-
er, the sixth eigenmode with τ(6) = 2.32 × 106 years has a distinct times-
cale from any of those in two-layer models, thus reflecting the effect of 
the intermediate weak layer. Note that the sixth eigenmode also has a 
relatively large amplitude A0

(6)/h0 = 0.668 (Table 1), indicating that this 
eigenmode has a dominant influence on surface flexure. Note also that 
τ (7) = 1.09837 × 1012 years and A0

(7)/h0 = 0.133901 are nearly identical 
to those of the third eigenmode in the two-layer model Case 0a with 
Te = 10 km (Table 1), indicating a nearly identical steady state flexure 
arises between τ (6) = 2.32 × 106 years and τ (7) = 1.09837 × 1012 in Case 1 
as between τ (2) = 4.48776 × 104 years and τ (3) = 1.09837 × 1012 years in 
Case 0a (the significance of this agreement will be made clear shortly).

Figure 3a shows the amplitude of flexure as a function of time in Case 
1. For the first 105  years, flexure is controlled by the first five eigen-
modes which have short characteristic times (<105  years) and small 
amplitudes (∼0.2 load-normalized sum total). The dominant flexural 
response is centered on τ (6) ∼ 2 × 106 years and has amplitude A0

(6)∼0.7 
consistent with the sixth eigenmode (Table 1). After ∼107 years, the flex-
ure reaches a steady state with normalized amplitude w0(t)/h0 = A0

(7)/
h0−1 = −0.866. It is not until τ (7) ∼ 1.10 × 1012 years that the seventh 
eigenmode decays (Equation 8), causing lithospheric stress to relax vis-
cously and surface flexure to approach a state of complete isostatic com-
pensation of the load (Table 1; note that Figure 3a only displays up to 
109 years). The numerical model accurately reproduces the analytic re-
sults up to ∼30 Myr and evolves to an identical steady state surface flex-
ure (i.e., lithospheric mode). This comparison provides a benchmark of 
the numerical model against analytic solutions for long timescales and 
a multilayer lithosphere which is, to the best of our knowledge, the first 
for such a benchmark.

Next, we estimate the effective elastic thickness of the multilayer lith-
osphere according to the cubic rule in Case 1a. Since the multilayer 

lithosphere contains two mechanically competent layers with Te1  =  10  km and Te2  =  30  km, we assign 
Te=(Te1

3 + Te2
3)1/3 = 30.37 km (Table 1). The evolution of flexure in Case 1a and Case 1 are relatively con-

sistent for t = 0 to t = ∼105 years, but the results diverge after 105 years (Figure 3a). After 105 years, the 
flexure for the cubic Case 1a has already reached steady state with a value of ∼0.2, while the flexure of the 
multilayer lithosphere in Case 1 begins to increase dramatically due to the evolution of the sixth eigenmode  
(τ (6) ∼ 2 × 106 years) (Figure 3a). As discussed earlier, the sixth eigenmode captures the effect of the in-
termediate weak layer and, unsurprisingly, it is the sixth eigenmode that causes the divergence of surface 
flexure between the multilayer lithosphere and the cubic rule. Therefore, comparison of Case 1a and Case 
1 clearly demonstrates that the cubic rule fails to estimate the effective elastic thickness of a multilayer 
lithosphere on long timescales. To understand why the flexure of the multilayer lithosphere in Case 1 di-
verges from that predicted by the cubic rule in Case 1a, we analyze the time-dependent stress field from the 
numerical model of Case 1.

The evolution of stress in the multilayer lithosphere is presented in Figures 3b and 4. At t = 0, the instan-
taneous elastic response of the entire domain produces stress that is uniformly distributed (Figure 4). As 
time evolves, viscous stress relaxation occurs in the underlying mantle, and elastic stresses become con-
centrated in the lithosphere (Figures 4a–4e). Stresses in the intermediate weak layer and lower competent 
layer start to decrease after ∼0.5 Myr (Figures 3b and 4e) and become a small fraction of that in the upper 
competent layer after ∼12 Myr (Figures 4f–4h). The significance of this result is that stress relaxation in 
the lower layers appears to be correlated with the deviation of flexure from the cubic rule.

Figure 3. Time-evolution of flexure and internal stresses. (a) The load-
normalized amplitude of flexure from Case 1, Case 0a, and Case 1a. (b) 
Stress averaged in each layer of the numerical Case 1 as a function of 
time, where layers are labeled 1–4 from top to bottom, such that layer 1 
corresponds to the upper competent layer, layer 2 to the intermediate weak 
layer, layer 3 to the lower competent layer, and layer 4 to the upper 50 km 
of the underlying mantle. The key result presented in this figure is that 
flexure of the multilayer lithosphere (Case 1) deviates from the cubic rule 
(Case 1a) on the same timescale as stress relaxation in layers 2, 3, and 4.
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The precise time-evolution of stress in the multilayer lithosphere is more easily compared with the surface 
flexure in Figure 3, which shows that the relaxation of stress in the lower layers occurs on the same times-
cale as the flexural deviation from the cubic rule (Figures 3a and 3b). These results indicate that prior to 
∼0.5 Myr, significant support of the surface load was provided by stresses in the lower competent layer, be-
cause the greatest amount of stress relaxation occurs in the lower competent layer between ∼0.5–10 Myr, 
and this leads to significant increases in both the surface flexure and the stress in the upper competent 
layer. In addition, lateral flow and stress relaxation in the intermediate weak layer appear to accommodate 
stress relaxation in the lower competent layer (Figure 4). This indicates that Case 1 diverges from Case 1a 
because the lower competent layer becomes decoupled from the surface load by flow in the intermediate 
weak layer.

We hypothesize that only the uppermost competent layer is responsible for supporting surface loads on long 
timescales since stresses in the lower competent layer relax in Case 1. To test this hypothesis, we re-consider 
the two-layer model Case 0a, with Te = 10 km, from Section 3.1 which has an identical lithospheric mode 
(i.e., τ(3) and A0

(3)/h0) to that of Case 1 (i.e., τ(7) and A0
(7)/h0), as pointed out earlier. Since the normalized 

steady state flexure, w0(t)/h0 = A0
(3)/h0−1 = −0.866, for Case 0a is identical to that of Case 1 with multilayer 

lithosphere, we thus confirm our hypothesis that the steady state flexural response of a multilayer litho-
sphere is identical to that of the uppermost competent layer only, due to decoupling of the lower competent 
layer from the surface load (Figure 3a).

In summary, we find it is not appropriate to estimate the effective elastic thickness, Te, of a multilayer 
lithosphere following the cubic rule (Equation  3). Rather, the effective elastic thickness of a multilayer 
lithosphere is simply that of the uppermost competent layer where surface loads are applied (i.e., Te=Te1). 
Furthermore, we show that the flexural response of the multilayer lithosphere in Case 1 is governed by 
seven eigenmodes, and that the sixth eigenmode causes the deviation from the cubic rule. In the following, 

Figure 4. Time-evolution of stress in the multilayer lithosphere of Case 1. (a–h) Stress (σ) normalized by the load 
stress (ρgh0) and velocity vectors in the upper 100 km of the domain at various times. Flow in the intermediate weak 
layer decouples the lower competent layer and underlying mantle from the surface load.
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we will test the sensitivity of these results, specifically the timescale and amplitude of the deviation from 
the cubic rule (i.e., τ (6) and A0

(6)/h0), to properties of the lithosphere including layer thicknesses, weak layer 
viscosity, and the wavelength of the load.

3.2.2. Effects of the Lithospheric Layer Thicknesses

In the following, we explore the sensitivity of the results to the weak layer thickness. In Suite 1, we compute 
a set of models that are identical to Case 1 except the weak layer thickness is varied from 1 to 30 km (Ta-
ble 2). Note that Case 1a (based on the cubic rule) is relevant to all cases in Suite 1 because Te1 and Te2 are 
held constant. In Figure 5a, we show that the time-dependent flexural response of Case 1 is representative 
of all cases in Suite 1, including an identical lithospheric mode, A0

(7)/h0, because Te1 = 10 km for all such 
cases (i.e., w0/h0 = 0.866 is the steady state flexural response) (Figure 5a). The amplitude of the deviation 
from the cubic rule is also identical for all cases in Suite 1, although the deviation occurs sooner for a thicker 
weak layer. For an intermediate weak layer thickness equal to 5 km, the cubic rule represents a reasonable 
approximation of the multilayer lithosphere until t ∼ 20 Myr, while for 20 km thick weak layer (Case 1), the 
cubic rule can only be applied until t ∼ 0.3 Myr (Figure 5a).

Next, we test the sensitivity of the results to different competent layer thicknesses in addition to weak layer 
thicknesses. In Suite 2, we increase the lower competent layer thickness Te2 to 50 km, and all other aspects 
of the models are identical to Suite 1. The results for Suite 2 are broadly the same as Suite 1 including 
identical steady state flexure (due to equivalent Te1), and similar timescale for deviation from the cubic 
rule, τ(6) (Figure 5b). However, in Suite 2, the amplitude of the deviation from the cubic rule, A0

(6)/h0, has 
increased because of increased Te2 which suppresses the flexural response based on the cubic rule (gray line 

Suite properties

Suite Te1 (km) Te2 (km) (Te1
3 + Te2

3)1/3 (km)

1 10 30 30.3659

2, 8, 12 10 50 50.1330

3 20 50 51.0447

4, 7, 11 50 50 62.9961

5, 9, 13 10 10 12.5992

6, 10, 14 50 100 104.004

Case Properties

Case Weak layer thickness (km) Weak layer viscosity (Pa s) λ/2 (km)

b 1 1 × 1019 25

c 2 2 × 1019 50

d 3 3 × 1019 120

e 4 1 × 1020 200

f 5 2 × 1020 400

g 10 3 × 1020 1,000

h 15 1 × 1021 −

i 20 2 × 1021 −

j 25 3 × 1021 −

k 30 1 × 1022 −

Note. Suites of models are identified by number, and the cases within each suite are identified by letter. Within a given suite, only one of (a) the weak layer 
thickness, (b) weak layer viscosity, or (c) half-wavelength of the load is varied. Cases associated with the letter “a” (e.g., Case 0a, Case 1a) are two-layer and have 
either Te = (Te1

3 + Te2
3)1/3 or Te = Te1 (refer to text and Table 1).

Table 2 
Model and Suite Parameter Values
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in Figure 5b), but not the eventual steady state flexural response of the 
multilayer lithosphere (black line in Figure 5b).

Suites 1 and 2 show that the cubic rule accurately predicts flexure during 
a certain time window that falls between τ(5) and τ(6) (Figure 5). While τ(5) 
is controlled by mantle viscosity and always <105 years, τ(6) is controlled 
by the intermediate weak layer and may vary from ∼1 Myr to 100s of Myr 
(Figure 5). In the following, we define more precisely an upper bound 
timescale, tu, on which the cubic rule applies. Note that the steady state 
flexure or lithospheric mode of a multilayer lithosphere is given by

w A h
E
  

0

7

0 1/ , (10)

where wE = −0.866 for all cases of Suite 1 and Suite 2 due to constant Te1 
(i.e., the horizontal portion of the black line labeled Te=Te1 in Figure 5a). 
Meanwhile, the steady state flexural amplitude according to the cubic 
rule for Suite 1 is wC = −0.206 = A0

(3)/h0−1 (i.e., the horizontal portion 
of the gray line in Figure 5a). Because the steady state flexure predicted 
by the cubic rule is also effectively identical to the transient steady state 
flexure in the multilayer cases, or w0(t)/h0 = A0

(6)/h0 + A0
(7)/h0−1 (e.g., for 

Case 1, wC = −0.198; Table 1), we take 

w A h A h
C
     

0

6

0 0

7

0 1/ / . (11)

where both A0
(6) and A0

(7) are constant for all cases of a given suite (i.e., the 
horizontal portion of the gray line labeled Te=(Te1

3
 + Te2

3)1/3 in Figure 5a).

If we assert that the cubic rule accurately represents a multilayer litho-
sphere when the normalized flexure, w0(t)/h0, differs from wC by less than 
or equal to a fraction f of wE−wC (i.e., the separation between the two 
horizontal lines in Figure 5a), then we can determine the upper bound 
timescale, tu, on which the cubic rule applies. This leads to the following 
equation,

w t h w f w w
C E C0 0     / , (12)

where w0(t) is expressed

w t h A e h A h
t

0 0 0

6
6

0 0

7

0 1          
/ / / .

/ (13)

Substituting Equation 13 into Equation 12 and using Equation 11 for wC, we have
  


61 .

1ut t ln
f (14)

This demonstrates that the upper bound timescale, tu, on which the cubic rule applies, is only a fraction of 
τ(6) depending on f, where f is the ratio of the deviation from the cubic rule (w(t)/h0−wC) to the total devia-
tion amplitude (wE−wC) which may be arbitrarily defined.

For example, if we choose f = 20% (i.e., 20% deviation from the bottom gray straight line to the top black 
straight line in Figure 5a), then tu = 0.223τ (6), and this illustrates that significant deviation from the cubic 
rule occurs before time reaches τ (6). In Figure 6a, we present τ (6) for Suites 1 and 2 with varying weak layer 
thicknesses, from which we can estimate the upper bound timescale, tu, for each case. For example, in Case 
1f with weak layer thickness 5 km, τ (6) ∼ 100 Myr which leads to an upper bound timescale tu ∼ 22 Myr. For 
Case 1 with weak layer thickness equal to 20 km, τ (6) ∼ 2.3 Myr which leads to an upper bound timescale 
tu ∼ 0.5 Myr. Alternatively, for f = 10%, tu = 0.105τ(6) which predicts even shorter upper bound timescales.

We also compute models with varying upper and lower competent layer thicknesses in Suite 3 with Te1 and 
Te2 equal to 20 and 50 km, in Suite 4 with 50 and 50 km, in Suite 5 with 10 and 10 km, and in Suite 6 with 
50 and 100 km, respectively (Table 2). Results from all Suites 1–6 are summarized in Figures 6a and 6b. 
Figure 6a shows that τ(6) is primarily controlled by the weak layer thickness but not the competent layer 
thicknesses, and that τ(6) decreases from over 1 Gyr to less than 1 Myr as the weak layer thickness increases 

Figure 5. The normalized flexural amplitude as a function of time for 
varying weak layer thickness. The thickness of the weak layer, ΔzWL, is 
varied from 1 to 30 km in Suite 1 (a), and Suite 2 (b). Results are compared 
with two-layer models for which Te = Te1 (black), and the cubic rule, 
Te = (Te1

3 + Te2
3)1/3 (gray).
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from 1 to 30 km. We suggest that the intermediate weak layer decouples the lower competent layer from the 
surface load more efficiently when it is thicker. Furthermore, τ(6) is also sensitive to the combined compe-
tent layer thickness or (Te1

3 + Te2
3)1/3, such that τ(6) decreases by a factor of ∼100 as (Te1

3 + Te2
3)1/3 increases 

from ∼12 to ∼100 km (Figure 6a, Table 2).

Figure 6b shows that the amplitude of the sixth eigenmode A0
(6)/h0 (i.e., the amplitude of the deviation from 

the cubic rule) is controlled by the competent layer thicknesses but not the weak layer thickness. On the 
one hand, the amplitude A0

(6)/h0 decreases for increasing Te1 (e.g., from ∼0.85 to ∼0.4 to ∼0.03 for Te1 equal 
to 10 km, 20 km, and 50 km in Suites 2, 3, and 4, respectively) (Figure 6b, Table 2). This is easily understood 
if we consider that increasing Te1 always leads to reduced steady state flexure and, therefore, a smaller 

Figure 6. The characteristic timescale and amplitude of the sixth eigenmode or deviation from the cubic rule. The 
characteristics of the sixth eigenmode for multilayer lithospheres with (a and b) varying weak layer thickness, (c and d) 
varying weak layer viscosity, and (e and f) load wavelength. Note that the half-wavelength of the load is normalized by 
Te1 in (f) but not (e). The significance of the sixth eigenmode is that it represents the flexural deviation of a multilayer 
lithosphere from that predicted by the cubic rule. Also note that significant deviation from the cubic rule occurs on the 
upper bound timescale, tu, which is a small fraction of τ(6) (Equation 14).
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deviation from the cubic rule upon relaxation of stresses in the deep lithosphere (i.e., A0
(6)/h0). In other 

words, the steady state flexure |wE| = 1−A0
(7)/h0 decreases and A0

(7)/h0 increases as Te1 increases. Therefore, 
if we consider that the sum of the amplitudes of all eigenmodes, Σi = 1

7A0
(i)/h0, is a constant (<1) defined by 

the instantaneous elastic response, then since the amplitudes of the first five eigenmode A0
(1–5)/h0 are con-

sistent with the cubic rule and generally small, A0
(6)/h0 decreases as Te1 increases because A0

(7)/h0 increases 
with Te1. Similarly, when Te1 is fixed, A0

(7)/h0 is also fixed (e.g., see Suites 1 and 2). On the other hand, the am-
plitude A0

(6)/h0 increases for increasing Te2 (e.g., from ∼0.1 to ∼0.65 to ∼0.85 for Te2 equal to 10 km, 30 km, 
and 50 km in Suite 5, 1, and 2, respectively) (Figure 6b, Table 2). This is also easily understood if we consider 
that increasing Te2 suppresses the transient flexural response prior to the deviation from the cubic rule, 
but not after, such that deviation from the cubic rule is enhanced. In other words, increased Te2 suppresses  
A0

(1-5)/h0 but does not affect A0
(7)/h0, and therefore increases A0

(6)/h0 given Σi = 1
7A0

(i)/h0, is a constant.

3.2.3. Effects of the Weak Layer Viscosity

We also test the sensitivity of the flexural response of a multilayer lithosphere to the viscosity of the inter-
mediate weak layer. The weak layer viscosity is varied from 1019 to 1022 Pa s in a layer thickness equal to 
5 km. We choose this weak layer thickness so that results can be easily scaled up or down to account for 
thinner or thicker weak layers based on Figure 6a. We also consider four different competent layer thickness 
combinations, where Te1 and Te2 are 50 and 50 km in Suite 7, 10, and 50 km in Suite 8, 10, and 10 km in 
Suite 9, and 50 and 100 km in Suite 10, respectively (Table 2). For reference, these competent layer thickness 
combinations are consistent with Suites 4, 2, 5, and 6, respectively.

The results are generally consistent with those for variation of the weak layer thickness, possibly because 
both properties of the weak layer have a similar influence on the degree of decoupling between the lower 
competent layer and the surface load. In particular, the effect of increasing the weak layer viscosity is sim-
ilar to the effect of reducing the weak layer thickness such that τ (6) is primarily controlled by weak layer 
viscosity (Figure 6c), and A0

(6)/h0 is again controlled by Te1 and Te2 (Figure 6d).

3.2.4. Effects of the Wavelength of the Load

Finally, we test the sensitivity of the results to the wavelength of the load. We vary the half-wavelength of 
the load from 25 to 1,000 km (Table 2). We consider four competent layer thickness combinations with Te1 
and Te2 equal to 50 and 50 km in Suite 11, 10, and 50 km in Suite 12, 10, and 10 km in Suite 13, and 50 and 
100 km in Suite 14, respectively (Table 2). For reference, the competent layer thickness combinations are 
consistent with those in Suites 7, 8, 9, and 10, respectively. The weak layer thickness is 5 km, and the weak 
layer viscosity is 1021 Pa s in all cases.

The value of τ(6) ranges from ∼105 years for load half-wavelengths of 25 km, to over 1 Gyr for load half-wave-
lengths ≥120 km (Figure 6e). This indicates that more rapid decoupling of the lower competent layer occurs 
for short-wavelength loads, and that reducing the wavelength of the load is similar in effect to increasing the 
thickness of the intermediate weak layer. For example, the 5 km weak layer is able to rapidly accommodate 
stresses associated with 25 km half-wavelength load, but the same 5 km weak layer is less efficient for loads 
with longer wavelengths, compared to which the weak layer is effectively thinner. In addition, τ(6) is again 
somewhat sensitive to (Te1

3 + Te2
3)1/3 in the same fashion as discussed previously (Figure 6).

The amplitude of the deviation from the cubic rule, A0
(6)/h0, is also sensitive to the wavelength of the load, 

and is maximal for λ/2 ∼ 10Te1 but diminishes to very small values for λ/2 < Te1 and 100 × Te1 < λ/2 (i.e., 
at very short and very long wavelengths relative to Te1) (Figure 6f). First, when λ/2 < Te1, the relaxation of 
stress in the deep lithosphere (i.e., the sixth eigenmode and deviation from the cubic rule) has little effect on 
the surface because Te1 is capable of supporting the load to high degree. More specifically, the value of A0

(6)/
h0 is small for λ/2 < Te1 because the load is almost fully supported by Te1 at short-wavelengths, such that the 
steady state flexure is approximately zero (i.e., wE = A0

(7)/h0−1 ∼ 0), which requires that A0
(7)/h0 ∼ 1 at the 

expense of all other eigenmodes (i.e., A0
(6)/h0 ∼ 0). Second, when 100 × Te1 < λ/2, deviation from the cubic 

rule A0
(6)/h0 is small because the surface flexure generally reaches complete isostatic compensation of the 

load even on short timescales (t ∼ τ (5)), which requires that A0
(1–5) be large and therefore both A0

(6) and A0
(7) 

be small given Σi = 1
7A0

(i)/h0, is a constant (Zhong, 1997) (Figure 6f).



Journal of Geophysical Research: Solid Earth

BELLAS AND ZHONG

10.1029/2021JB022678

13 of 17

4. Discussion
We have demonstrated that the flexural response of a multilayer lithosphere is strongly dependent on the 
properties of the weak intermediate layer including its viscosity and thickness. This directly contradicts 
the reasoning behind the cubic rule, wherein the effective elastic thickness of a multilayer lithosphere is 
assumed to be a function of the competent layer thicknesses, only (Equation 3). The origin of the cubic rule, 
as described in the Introduction, is that the bending moment derived from the vertical integral of bending 
stresses is proportional to the elastic thickness cubed (Te

3). What the cubic rule implicitly assumes is that 
each competent layer is subject to the same curvature as the uppermost competent layer, such that the sum 
for the total bending moment reduces to the sum for the total elastic thickness of a multilayer lithosphere. 
However, we have demonstrated in this study that the stress relaxes in the lower competent layer due to me-
chanical decoupling from the surface load. Therefore, the curvature of the lower competent layer reduces to 
much less than that of the surface layer, causing significant deviation from the cubic rule. The steady state 
flexure of a multilayer lithosphere in response to surface loads is controlled by the uppermost competent 
layer only, or Te = Te1, and the timescale to reach steady state is controlled by properties of the system which 
are discussed in more detail in the following.

The flexural response of a four-layer system (i.e., multilayer lithosphere) is controlled by seven eigenmodes. 
Our analysis revealed that the first five eigenmodes are associated with viscous relaxation of stress in the 
mantle which occurs on short timescales (<105 years for mantle viscosity of 1021 Pa s) and produces a flex-
ural response that is consistent with the cubic rule. However, this response is transient and applies only for 
time less than an upper bound timescale, tu, defined in Equation 14. The deviation from the cubic rule is 
caused by the sixth eigenmode which represents the decoupling effect of flow in the intermediate weak lay-
er and the relaxation of stress in the lower competent layer on surface flexure. The characteristic timescale 
of the sixth eigenmode, τ(6), is generally intermediate (Myr-Gyr) and primarily controlled by the thickness 
and viscosity of the weak layer (Figure 6). We emphasize that significant deviation from the cubic rule 
occurs for t > tu where tu is generally a small fraction of τ(6) (e.g., tu ∼ 0.1τ(6)–0.2τ(6), Equation 14). Finally, 
the seventh eigenmode is associated with viscous relaxation of the competent upper crust, which occurs 
on very long timescales (1012 years for upper crustal viscosity of 1030 Pa s) and leads to complete isostatic 
compensation of the load.

Results show that if the intermediate weak layer is sufficiently thick and weak (i.e., thickness ≥5 km, viscos-
ity ≤1021 Pa s) then deviation from the cubic rule occurs on rapid geological timescales (e.g., 105–108 years) 
for realistic lithospheric layer thicknesses and loads (Figure 6, Equation 14). The deviation is also sensitive 
to the wavelength of the load, where short-wavelength loads produce deviation on the shortest timescales, 
and intermediate-wavelengths (λ/2 ∼ 10Te1) produce the largest amplitude of deviation from the cubic rule, 
A0

(6)/h0 (Figure 6). Of greatest importance is that the steady state flexure of a multilayer lithosphere is con-
trolled by the upper competent layer thickness, only, or Te = Te1, because the intermediate weak layer acts 
to decouple the lower competent layer from the surface load. We suggest that this new rule is more accurate 
and should be applied in place of the cubic rule in future studies of flexural systems that have achieved 
steady state.

4.1. Re-Interpreting Elastic Thickness in Continental Settings

It is generally expected that the Te of continental lithosphere will correspond to the base of the mechanical 
lithosphere, which lies at the depth of the ∼700°C isotherm based on laboratory-derived rheological laws 
(Brace & Kohlstedt, 1980). Previous studies recognized that this would be the case only for continental lith-
osphere that is fully mechanically coupled, and applied the cubic rule in continental settings with a weak 
lower crust (Burov & Diament, 1995; McNutt et al., 1988). However, we have shown in the present study 
that the cubic rule is not generally valid. In the following, we discuss the implications of re-interpreting 
elastic thickness in continental settings based on our new results.

In settings where the competent upper crust is much thinner than the mantle lithosphere (Te1 << Te2), the 
cubic rule leads to significant misinterpretation and error because it predicts that Te = (Te1

3 + Te2
3)1/3 ∼ Te2, 

while our new results indicate that Te = Te1. A mechanically competent upper crust that is thinner than 
the mantle lithosphere may arise in settings such as the Kazakh shield at the Northern Tien Shan, the 
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sub-Andean Range, and the Carpathians, where the continental litho-
sphere is old (>700 Myr) and the Moho is deep (>50 km). In such set-
tings, the observational values of Te coincide with the depth of the base 
of the competent upper crust (Burov & Diament, 1995), or Te = Te1, con-
sistent with the newly derived rule in this study. This is a marked im-
provement compared to the cubic rule, which is inconsistent with the 
relatively small observational Te (e.g., 20–40  km) at settings where the 
mantle lithosphere is quite thick (≥100 km), such as the Northern Tien 
Shan (Lü et al., 2020) and the sub-Andean range (Ward et al., 2016), al-
though the thickness of the mantle lithosphere beneath the Carpathians 
is not generally agreed upon (Knapp et al., 2005).

In a multilayer lithosphere with thick upper crust compared to the man-
tle lithosphere (Te1  >>  Te2), the cubic rule makes predictions that are 
consistent with our new results because Te = (Te1

3 + Te2
3)1/3 ∼ Te1. Sim-

ilarly, in multilayer lithospheres where Te1 ∼  Te2, the cubic rule makes 
somewhat reasonable predictions because Te = (Te1

3 + Te2
3)1/3 = 21/3Te1, 

which comprises relatively modest error (26%). A mechanically compe-
tent upper crust of equal or greater thickness than the mantle lithosphere 
may arise in young (<400 Ma) continental lithosphere and older conti-
nental lithosphere that has been significantly warmed from below (i.e., 
thermally rejuvenated). Observationally inferred estimates of Te are con-
sistent with the depth to the base of the mechanically competent crust 
and the 200°–400°C isotherm depth (Burov & Diament, 1995) in young 
continental settings such as the Eastern Alps (Karner & Watts, 1983), the 
Transverse Ranges (Sheffels & McNutt, 1986), the Apennines (Kruse & 

Royden, 1994), the Pamirs (Burov et al., 1990), Lake Bonneville and Lake Hamilton (Watts, 1992), and these 
observations are consistent with both the new results of this study and the cubic rule.

The cubic rule makes correct predictions for flexural systems in which the transient solution persists (i.e., 
t < tu, Equation 14), which may be relevant in continental settings where the loading process is recent or 
ongoing. For example, the Zagros Mountains continue to experience uplift today due to collision of the 
Arabian plate with Eurasia, and Lake Baikal is 25–30 Ma, a timescale on which the transient solution (i.e., 
the cubic rule) may persist depending on the properties of the weak lower crust. In these settings, the 
observationally inferred estimates of Te are intermediate between the cubic rule and the new rule derived 
herein, (Te1

3 + Te2
3)1/3 > Te > Te1, which may indicate that relaxation of the mantle lithosphere is ongoing. 

In particular, observationally inferred estimates of elastic thickness are Te ∼ 50 km at the Zagros mountains 
and North Baikal Lake where the base of the mechanically competent crust is ∼40 km deep and the base of 
the mantle lithosphere is ∼135 km deep (Burov & Diament, 1995).

Glacial isostatic adjustment (GIA) is generally associated with very recent loading (e.g., <25 × 103 years), 
such that we would not expect the flexural response of a multilayer lithosphere to have reached steady state 
(i.e., Te = Te1 applies) unless the weak lower crust is quite weak and/or quite thick. In Figure 7, we present 
the characteristic timescale to reach steady state flexure, τ(6), for a broad range of weak layer properties. Note 
that the timescale to achieve steady state flexure is generally longer than τ(6) (e.g., 2τ(6)–5τ(6)), similar to how 
the timescale of deviation from the cubic rule is generally shorter than τ(6) (e.g., 0.223τ(6), Equation 14). To 
reach steady state flexure on the timescale associated with GIA (25 × 103 years) such that Te = Te1 applies 
would require a weak lower crustal thickness ≥20 km and weak lower viscosity ≤1020 Pa s, for a load with 
λ/2 = 120 km, Te1 = 10 km and Te2 = 50 km. Note that this timescale would also increase for increasing 
wavelength of the load, and could either increase or decrease by ×10 depending on Te1 and Te2 (refer to 
Figure 6).

Migration of foreland basins and the associated flexural bulge may also comprise evidence of the effects of a 
weak lower crust on flexure in the sediment stratigraphy (DeCelles & Giles, 1996; Patton & O'Connor, 1988). 
In particular, if stress relaxation occurs in the mantle lithosphere due to the existence of a weak lower crust, 
then the effective elastic thickness of the system would reduce with time such that the forebulge would 

Figure 7. Summary of the characteristic timescale τ(6) which governs 
deviation from the cubic rule and steady state flexure. The results from 
110 analytic models are presented in terms of the timescale of the sixth 
eigenmode, τ(6). All models have Te1 = 10 km and Te2 = 50 km, consistent 
with Suites 2, 8, and 12. The characteristic timescale may vary by a factor 
of ∼10 if Te1 or Te2 are varied as in other Suites. Note that the deviation 
from the cubic rule occurs after ∼0.1–0.2τ(6), while steady state flexure is 
achieved after 2τ(6)–5τ(6).
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migrate toward the load. In general, forebulge migration away from the load (i.e., craton-ward) is more 
commonly observed because loads associated with orogens often advance (e.g., Currie, 1997; Price & Hatch-
er, 1983; Roddaz et al., 2005; Ussami et al., 1999; White et al., 2002). However, instances in which the fore-
bulge migrates toward the orogen or load include the foreland basin of Alberta during the Cretaceous (Plint 
et al., 1993), the Appalachian basin during the Devonian (Dever et al., 1977; Quinlan & Beaumont, 1984), 
the east-Ural basin during the Carboniferous (Proust et al., 1998), and the Llanos basin during the Eocene 
(Bayona et al., 2007). While previous studies have attributed load-ward migration of the forebulge to lateral 
variations in flexural strength of the lithosphere or basin formation dynamics, the work presented herein 
is the first to demonstrate that vertical variation in lithospheric strength (e.g., a weak lower crust) is also 
capable of producing lateral migration of a forebulge.

An additional implication of the newly derived rule, Te = Te1, is that small estimates of Te in continental 
settings may not necessarily indicate a thin mantle lithosphere if a weak lower crust is present. It is of great 
importance that seismic tomography be used in combination with flexural studies to understand the struc-
ture of continental lithosphere, because estimates of Te that are consistent with the thickness of the me-
chanically competent upper crust cannot be used independently to discriminate between a jelly sandwich 
and a crème brûlée configuration (Burov, 2015). For example, seismic tomography indicates that old, cold, 
and thick mantle lithosphere does not exist at Lake Bonneville (Austermann et al., 2019; Shen et al., 2013). 
We propose that the presence of a weak lower crust could be partially responsible for the low inferred val-
ues of Te at coronae (Russell & Johnson, 2021) despite the stagnant-lid convection style of Venus, but future 
missions will be required to test this hypothesis using seismic tomography.

In this study we have considered only surface loads although subsurface loads may also exist in Earth 
and planetary systems. For loads that are internal to the upper crust, we expect the flexural response to be 
equivalent to that demonstrated for surface loads, that is, the flexural response will be controlled by the 
upper crust only, or Te = Te1. However, if a multilayer lithosphere is acted upon by a load that is internal to 
the mantle lithosphere, or imposed on the base of the mantle lithosphere, then we expect that the flexural 
response will be controlled by the mantle lithosphere only, or Te = Te2, and that the stress associated with 
the load will not be transmitted to the upper crust or surface on long geologic timescales (e.g., Bindschadler 
& Parmentier, 1990).

Finally, the results presented in this study are subject to the limitation of complete crustal extrusion which 
may occur in real Earth systems if the difference in flexure between two competent layers exceeds the thick-
ness of the intermediate weak layer. If the two competent layers come into contact with each other com-
pletely, then the total elastic thickness is the sum of the thicknesses of the two layers, that is, Te = Te1 + Te2. 
If the two competent layers come into contact only at some isolated patches, the effective elastic thickness 
is likely between Te = Te1 + Te2 and Te1. In the latter case, the numerical models can be reformulated to ac-
count for the partial contacts between the two layers, while our analytical models are no longer applicable. 
While our new result appears to improve understanding of flexure at the Kazakh Shield, the Northern Tien 
Shan, and the sub-Andean Range, we acknowledge that flexure in systems with complete crustal extrusion 
would differ.

5. Conclusions
The response of a multilayer lithosphere with an intermediate weak layer to a surface load is investigated 
using 2D viscoelastic loading models. Results show that the steady state surface flexure is controlled by the 
uppermost mechanically competent layer, only, or Te = Te1. This is because the intermediate weak layer acts 
to decouple the surface load from the lower competent layer. As a result, stresses relax in the lower compe-
tent layer which eventually does not support the surface load at all. The timescale to reach steady state is 
controlled primarily by the properties of the intermediate weak layer and the geometry of the load, where 
greater weak layer thickness, lower weak layer viscosity, and shorter load-wavelengths produce steady state 
more rapidly. The timescale to reach steady state is as short as ∼5 × 105–107 years for many of the geological-
ly reasonable rheological parameters (weak layer viscosity ≥1019 Pa s) and structures (weak layer thickness 
≥5 km, load wavelength λ = 240 km) tested herein (Figures 6 and 7), and deviation from the cubic rule 
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occurs much sooner. We therefore consider our new result, Te = Te1, to be geologically relevant and a signifi-
cant improvement to our understanding of flexural dynamics compared to the cubic rule. The improvement 
of this new rule Te = Te1 compared to the cubic rule is also corroborated by observational estimates of Te 
that are consistent with the depth to the base of the mechanically competent upper crust (i.e., Te = Te1) in 
the Kazakh Shield at Northern Tien Shan and the sub-Andean Range. Finally, the amplitude of the flexural 
deviation from the cubic rule is controlled primarily by the competent layer thicknesses and the wavelength 
of the load, such that the revisions to previous studies which used the cubic rule are most significant in ge-
ologic settings with intermediate load wavelengths (λ/2 ∼ 10Te1) and thick mantle lithosphere (Te2 >> Te1).

Data Availability Statement
The analytic and numerical codes used to produce the data in this study will be made available upon request 
or can be downloaded from https://doi.org/10.6084/m9.figshare.14226716.v1.
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