ASHLEY BELLAS-MANLEY

ADDRESS EMAIL & TELEPHONE		Aerospace Engineering Sciences University of Colorado Boulder 3775 Discovery Drive Boulder, CO, 80309 ashley.bellas@colorado.edu; 720-900-9363
EMPLOYMENT	08/2022-present	Postdoctoral Associate Department of Aerospace Engineering Sciences, University of Colorado Boulder
	08/2021-08/2022	Postdoctoral Fellow Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology
	05/2021-08/2021	Postdoctoral Associate Department of Physics, University of Colorado Boulder
EDUCATION	08/2014-05/2021	University of Colorado Boulder, Department of Physics Ph.D. in Geophysics: Reconciling the Rheology of Earth's Lithosphere Across Vastly Different Length- and Time-Scales Thesis advisor: Prof. Shijie Zhong
	09/2009-05/2014	University of British Columbia B.Sc. in Geophysics with distinction

PUBLICATIONS **Bellas-Manley, A.** & L. Royden (2024), Basal Mantle Flow Over LLSVPs Explains Differences in Pacific and Indo-Atlantic Hotspot Motions, *J. Geophys. Res.: Solid Earth,* 129, e2023JB027636. https://doi.org/10.1029/2023JB027636

Bellas, A., S.J. Zhong, & A.B. Watts (2022), Reconciling lithospheric rheology between laboratory experiments, field observations, and different tectonic settings, *Geophysical Journal International*, **228**, 857–875.

Bellas, A., & S.J. Zhong (2021), Effects of a weak lower crust on the flexure of continental lithosphere, *J. Geophys. Res.: Solid Earth,* **126**, 10, e2021JB022678.

Bellas, A., & S.J. Zhong (2021), Seismic strain rate and flexure at the Hawaiian Islands constrain the frictional coefficient, *Geochemistry, Geophysics, Geosystems*, **22**, e2020GC009547.

Bellas, A., S.J. Zhong, & A.B. Watts (2020). Constraints on the rheology of the lithosphere from flexure of the Pacific Plate at the Hawaiian Islands. *Geochemistry, Geophysics, Geosystems, 21*, e2019GC008819. https://doi.org/10.1029/2019GC008819.

Bellas, A., S.J. Zhong, D. Bercovici, & E. Mulyukova (2018), Dynamic weakening with grain-damage and implications for slab detachment, Phys. Earth Planet. Int., 285, 76-90.

SKILLS

- Computational fluid dynamics
- MATLAB, Python, Fortran, C
- Writing grant proposals
- Data science
- Remote sensing
- Geodynamics
- Satellite geodesy
- Speaking
- Writing scientific papers

EXPERIENCE

Ten+ years modifying, compiling, running parallelized open source codes in C, Fortran, MATLAB, Python

Ten+ years processing, analyzing, interpreting, visualizing data (observational and model-generated)

CONFERENCE PRESENTATIONS

AGU Fall Meeting (2023), San Francisco, CA. Data-Driven Approaches to Understanding Future Regional Sea Level Change, G53B-03.

NASA GRACE-FO Science Team Meeting (2023), Pasadena, CA. Impacts of GIA Modeling Uncertainties on the Closure of the Global Mean Ocean Mass Budget

NASA Sea Level Change Science Team Meeting (2023), Pasadena, CA. Data-Driven Approaches to Understanding Regional Variations in Future Sea Level Change

Study of the Earth's Deep Interior Conference (2022), Zurich, Switzerland. Basal Mantle Flow Over LLSVPs Explains Differences in Pacific and Indo-Atlantic Hotspot Motions

AGU Fall Meeting (2021), New Orleans, LA. Effects of a Weak Lower Crust on the Flexure of Continental *Lithosphere*, T11D-05.

AGU Fall Meeting (2021), New Orleans, LA. Reconciling Lithospheric Rheology Between Laboratory Experiments, Field Observations, and Different Tectonic Settings, MR43A-06.

AGU Fall Meeting (2020). Testing the Yield-Stress Envelope Method Against Finite Element Models of Flexure, T011-0008.

AGU Fall Meeting (2019) San Francisco, CA. Constraining the Frictional Coefficient: a Comparison of Strain Rate Inferred from Seismicity and 3D Viscoelastic Loading Models at Hawaii, MR44A-03.

AGU Fall Meeting (2019) San Francisco, CA. Elastic Thickness: A Comparison of Estimates from Fully Dynamic Viscoelastic Models and the Yield-Strength Envelope Method, MR51B-0040.

Gordon Research Conference (2019) Holyoke, MA. Constraining the rheology of the lithosphere using flexure at the Hawaiian Islands.

AGU Fall Meeting (2018) Washington, D.C. Constraining mantle rheology at lithospheric conditions using observations of flexure at the Hawaiian Islands, MR24A-01.

Study of the Earth's Deep Interior Conference (2018), Edmonton, AB, Canada. *Dynamics of a Subducted Slab with Grain-Damage*

ABOUT ME

Welcome, and thank you for visiting my CV!

I am a highly conscientious individual which means that I am orderly and industrious. I care about understanding things thoroughly, I am inspired by beauty, and I aim to serve a purpose. In my PhD, I investigated why Earth is the only terrestrial planet in the solar system with plate tectonics (Bellas et al., 2018-2022). As a postdoc, I studied the structure and dynamics of the deep Earth (Bellas & Royden, 2024), and combined satellite observations with computational models to quantify, understand, and project sea level change (Bellas & Nerem, 2023). I am looking for new opportunities to meet excellent people and pursue meaningful work. Please reach out if you are interested in working with me.